Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response.
نویسندگان
چکیده
The mechanisms subserving the ability of glucocorticoid signaling within the medial prefrontal cortex (mPFC) to terminate stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis are not well understood. We report that antagonism of the cannabinoid CB(1) receptor locally within the mPFC prolonged corticosterone secretion following cessation of stress in rats. Mice lacking the CB(1) receptor exhibited a similar prolonged response to stress. Exposure of rats to stress produced an elevation in the endocannabinoid 2-arachidonoylglycerol within the mPFC that was reversed by pretreatment with the glucocorticoid receptor antagonist RU-486 (20 mg/kg). Electron microscopic and electrophysiological data demonstrated the presence of CB(1) receptors in inhibitory-type terminals impinging upon principal neurons within layer V of the prelimbic region of the mPFC. Bath application of corticosterone (100 nm) to prefrontal cortical slices suppressed GABA release onto principal neurons in layer V of the prelimbic region, when examined 1 h later, which was prevented by application of a CB(1) receptor antagonist. Collectively, these data demonstrate that the ability of stress-induced glucocorticoid signaling within mPFC to terminate HPA axis activity is mediated by a local recruitment of endocannabinoid signaling. Endocannabinoid activation of CB(1) receptors decreases GABA release within the mPFC, likely increasing the outflow of the principal neurons of the prelimbic region to contribute to termination of the stress response. These data support a model in which endocannabinoid signaling links glucocorticoid receptor engagement to activation of corticolimbic relays that inhibit corticosterone secretion.
منابع مشابه
Functional interactions between stress and the endocannabinoid system: from synaptic signaling to behavioral output.
Endocannabinoid signaling is distributed throughout the brain, regulating synaptic release of both excitatory and inhibitory neurotransmitters. The presence of endocannabinoid signaling within stress-sensitive nuclei of the hypothalamus, as well as upstream limbic structures such as the amygdala, suggests it may play an important role in regulating the neuroendocrine and behavioral effects of s...
متن کاملThe Effects of L-arginine on the Hippocampus of Male Rat Fetuses under Maternal Stress
Introduction: Prenatal stress has deleterious effects on the development of the brain and is associated with behavioral and psychosocial problems in childhood and adulthood. This study aimed to determine the protective effect of L-arginine on fetal brain under maternal stress. Methods: Twenty pregnant Wistar rats (weighting 200-230 g) were randomly divided into 4 groups (n=5 for each group). T...
متن کاملChronic Stress Induces Anxiety via an Amygdalar Intracellular Cascade that Impairs Endocannabinoid Signaling
Collapse of endocannabinoid (eCB) signaling in the amygdala contributes to stress-induced anxiety, but the mechanisms of this effect remain unclear. eCB production is tied to the function of the glutamate receptor mGluR5, itself dependent on tyrosine phosphorylation. Herein, we identify a novel pathway linking eCB regulation of anxiety through phosphorylation of mGluR5. Mice lacking LMO4, an en...
متن کاملEndogenous cannabinoid signaling is essential for stress adaptation.
Secretion of glucocorticoid hormones during stress produces an array of physiological changes that are adaptive and beneficial in the short term. In the face of repeated stress exposure, however, habituation of the glucocorticoid response is essential as prolonged glucocorticoid secretion can produce deleterious effects on metabolic, immune, cardiovascular, and neurobiological function. Endocan...
متن کاملP36: Role of Brain-Derived Neurotrophic Factor in Pathogenesis and Treatment of Post-Traumatic Stress Disorder
Post-traumatic stress disorder (PTSD) is a syndrome causing from a severe traumatic happening that leads to threatened death or injury. PTSD is associated with changes in limbic, hippocampal, and prefrontal cortical region function due to changes in synaptogenesis, dendritic modifying, and neurogenesis. Changes in neuron in PTSD patients result from pathophysiological disturbances in inflammato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 29 شماره
صفحات -
تاریخ انتشار 2011